CBSE March-2017

Key Notes

The Coulomb's law, $F=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1} q_{2}}{r^{2}}$
Electric field, $\mathrm{E}=\frac{\mathrm{F}}{\mathrm{q}_{0}} ; \mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{r^{2}}$
Electric dipole moment, $p=q \times 2 a$, where $2 \mathrm{a} \rightarrow$ length of dipole
' E ' at the axial line of an electric dipole, $E=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 p}{d^{3}}$
' E ' at the equatorial line of an electric dipole, $E=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{p}{d^{3}}$
Torque on a dipole in a uniform electric field, $\tau=$
$p E \sin \theta=\bar{p} \times \bar{E}$
Electric potential due to a point charge, $V=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{r_{0}}, V=\frac{W}{q}$
Potential due to an electric dipole, $V=\frac{1}{4 \pi \varepsilon_{0}} \frac{p \cos \theta}{r^{2}-a^{2} \cos ^{2} \theta}$
*Equipotential surface is that surface when potential at
any point of the surface has the same value.
Application of Gauss' Theorem:-
Electric field due to a spherical shell, $E=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{r^{2}}$
Field due to an infinite line of charge, $E=\frac{\lambda}{2 \pi \varepsilon_{0} r}$
Field due to a plane sheet of charge (infinite), $E=\frac{\sigma}{2 \varepsilon_{0}}$
Capacity of Capacitors, $C=\frac{q}{V}$
Parallel plate capacitor, $C=\frac{q}{V}=\frac{\varepsilon_{0} A}{d}$
Capacitors in series, $\frac{1}{\mathrm{C}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}$
Capacitors in parallel, $C=C_{1}+C_{2}+C_{3}$
Energy of a charged capacitor, $P E=\frac{q^{2}}{2 C}=\frac{1}{2} C V^{2}=\frac{1}{2} q V$
Gauss's theorem \rightarrow Total flux $\phi=\frac{q}{\varepsilon_{0}}$
Electric current $\rightarrow I$ in amperes $=\frac{q \text { in coilombs }}{t \text { in seconds }}$
Drift velocity $\mathrm{v}_{\mathrm{d}}=\frac{-\mathrm{eE}}{\mathrm{m}} \tau \quad ;$ Mobility $\mu=\frac{\mathrm{v}_{\mathrm{d}}}{E}=\frac{e \tau}{m}$
$\mathrm{I}=\mathrm{nAev} \mathrm{v}_{\mathrm{d}} \rightarrow$ relation $\mathrm{b} / \mathrm{w} \mathrm{I}$ and v_{d}
Ohm's law $\rightarrow I \propto V$ or $V=I R$ or $=\frac{V}{I}$;Resistivity, $\rho=\frac{R A}{l}$
Effect of temperature on resistance
$\alpha=\frac{R-R_{0}}{R_{0} \times t}=\frac{\text { Increase in resistance }}{\text { Resistance at } 0^{0} C \times \text { rise in temperature }}$
Resistance in series, $R=R_{1}+R_{2}+R_{3}$
Resistance in parallel $\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}$
Terminal potential $\rightarrow \mathrm{V}=\mathrm{E}$-Ir
Internal resistance of cell $\rightarrow r=\frac{(\mathrm{E}-\mathrm{V}) \mathrm{R}}{\mathrm{V}}$
Find unknown resistance using Meter Bridge Wheatstone bridge balancing condition $\rightarrow \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{\mathrm{R}_{3}}{\mathrm{R}_{4}}$ Unknown resistance, $X=\frac{l . R}{100-l}$
Comparison of e.m.f using potentiometer $\rightarrow \frac{E_{1}}{E_{2}}=\frac{l_{1}}{l_{2}}$
Internal resistance of a cell using potentiometer $\rightarrow r=\frac{R\left(l_{0}-l\right)}{l}$
Heating effect of electric current $\rightarrow H=I^{2} R t$
Electric power and electric energy
Electric power $=\frac{\mathrm{w}}{\mathrm{t}}=$ VI watts ; Electric energy $E=$ VIt
Magnetic flux density $\rightarrow d B=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{Idl} \sin \theta}{r^{2}}$
Flux density in a circular coil $\rightarrow B=\frac{\mu_{0} n I}{2 a}$
Flux density for infinity long semi conductor $\rightarrow B=\frac{\mu_{0} I}{2 \pi a}$
Flux density in a straight conductor $\rightarrow \phi B . d l=\mu_{0} I$
Lorentz force equation $\rightarrow \mathrm{F}_{\mathrm{m}}=\mathrm{q}(\mathrm{vxB})$
Torque on a magnetic dipole in magnetic field

Torque $=m \times B$; Magnetic susceptibility $\rightarrow \chi=\frac{M}{H}$
Electromagnetic induction and alternating current
Magnetic flux $=n A B \cos \theta$
Induced emf $\rightarrow \varepsilon=-\frac{d \emptyset}{d t}$; Induced e.m. $\mathrm{f} \rightarrow \varepsilon=B l v$
Magnetic flux $\rightarrow \emptyset=L I$ or $M I$
Induced e.m. $f=L \cdot \frac{d l}{d t}$ or $M \cdot \frac{d l}{d t}$
L of solenoid $=\mu_{0} n^{2} l A$
Induced charge $=\frac{\text { change of flux }}{\text { resistance }}$
M for co-axial solenoids $=\mu_{0} n_{1} n_{2} A l$
$\mathrm{E}_{\mathrm{rms}}=\frac{\mathrm{E}_{0}}{\sqrt{2}}, I_{r m s}=\frac{I_{0}}{\sqrt{2}} ; \mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}=2 \pi \mathrm{f}_{\ell} \quad ; \quad \mathrm{X}_{\mathrm{C}}=\frac{1}{\omega \mathrm{~L}}=\frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}$ Impedance of LCR circuits
$Z=\sqrt{R^{2}\left(X_{L}-X_{C}\right)^{2}}$ and phase angle, $\tan \Phi=\frac{L \omega-\frac{1}{C \omega}}{R}$
Series resonance frequency $\rightarrow \mathrm{f}_{\mathrm{r}}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$
Q-factor $=\frac{\omega_{r} L}{R}=\frac{X_{L} \text { at resonance }}{R}$
Energy stored in an inductor $=\frac{1}{2} L I^{2}$
Energy stored in a capacitor $=\frac{1}{2} C V^{2}$
Power factor $\cos \phi=\frac{R}{Z}$
Frequency of LC oscillators $\rightarrow f=\frac{1}{2 \pi \sqrt{L C}}$
For any waves $v=v \lambda$
Speed of e.m wave in a medium $=\frac{1}{\sqrt{\mu \varepsilon}}$
Speed in vaccum $=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$
Refractive index $=\frac{\mathrm{C}}{\mathrm{v}}=\sqrt{\mu_{r} \varepsilon_{r}} \sim \sqrt{\varepsilon_{r}}$
Focal length, $f=\frac{\mathrm{R}}{2}$; where $\mathrm{R} \rightarrow$ Radius of curvature
Mirror Equation $\rightarrow \frac{1}{\mathrm{f}}=\frac{1}{\mathrm{u}}+\frac{1}{\mathrm{v}} ;$ Snell's law, $n_{21}=\frac{n_{2}}{n_{1}}=\frac{\sin i}{\sin r}$
Refractive index of medium, $n=\frac{\text { speed of light in air }}{\text { speed of light in medium }}$
$\operatorname{Sin} i_{c}=\frac{1}{n} \quad$ ie. $\quad i_{c}=\sin ^{-1}\left(\frac{1}{n}\right)$
Equation of refraction in a spherical surface (When ray from n_{1} to $\left.n_{2}\right) \rightarrow \frac{n_{2}}{v}-\frac{n_{1}}{u}=\frac{n_{2}-n_{1}}{R}$ ie.

$$
\frac{\text { R. I of } 2^{\text {nd }}}{\text { Image distance }}-\frac{\text { R. I of } 1^{\text {st }}}{\text { Object distance }}=\frac{\text { R.I of } 2^{\text {nd }}-\text { R.I of } 1^{\text {st }}}{R}
$$

Len's Makers Formula $\rightarrow \frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
Thin Lens Formula $\rightarrow \frac{1}{\mathrm{f}}=\frac{1}{\mathrm{~V}}-\frac{1}{\mathrm{u}}$; Power of lens $\rightarrow P=\frac{1}{f}$
Combination of lens $\rightarrow \frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}} ; P=P_{1}+P_{2} ; m=m_{1} \times m_{2}$
Refractive index of material of prism $\rightarrow n_{\text {glass }}=\frac{\sin \left(\frac{A+D_{m}}{2}\right)}{\sin \left(\frac{A}{2}\right)}$
Simple microscope $\rightarrow m=1+\frac{\mathrm{D}}{\mathrm{F}}$ (Near point); $m=\frac{\mathrm{D}}{\mathrm{F}}$ (Infinity)
Compound microscope $\rightarrow m=m_{0} \mathrm{xm}_{e} \rightarrow m \approx \frac{\mathrm{~L}}{\mathrm{f}_{\mathrm{o}}} \times\left(1+\frac{\mathrm{D}}{\mathrm{f}_{\mathrm{e}}}\right)$
Interference \Rightarrow Condition for Bright fringe \rightarrow path diff. $=\mathrm{n} \lambda$
Condition for Dark fringe \rightarrow path diff. $=(2 n+1) \frac{\lambda}{2}$
Fringe with (Band width) $\rightarrow \beta=\frac{\lambda D}{d}$
Resolving power of microscope $=\frac{1}{d}=\frac{2 n \sin \theta}{\lambda}$ where d is the smallest distance between two points. $\mathrm{n} \rightarrow$ refractive index of medium.
Brewsters's Law $\rightarrow \tan \theta_{\mathrm{p}}=\mathrm{n} ; \theta_{\mathrm{p}}$ - Polarising angle
$R=R_{0} A^{1 / 3} ; N=N_{0} e^{-\lambda t} ; T_{1 / 2}=\frac{0.693}{\lambda} ; T_{\text {mean }}=\frac{1}{\lambda}$
$\beta=\frac{\Delta i_{c}}{\Delta i_{b}} \quad ; \alpha=\frac{\Delta i_{c}}{\Delta i_{e}}$
Modulation index $\mu=\frac{\mathrm{A}_{\mathrm{m}}}{\mathrm{A}_{\mathrm{c}}} \ll 1$ in prctical condition
Range of transmission, $d_{T}=\sqrt{2 \mathrm{Rh}}: \mathrm{h} \rightarrow$ hight of antenna

