MES INDIAN SCHOOL DOHA- QATAR HOLIDAY ASSIGSOMENT -2016-2017
 BOYS
 PHYSSICS

CLASS XI(CBSE)

1. The frequency n of a stretched string may depend on
2. Length of the vibration segment \mathbb{C}.
3. The tension in the string F
4. The mass per unit length m.

$$
\text { Show that } n \propto(1 / \rho) \sqrt{ }(F / \mathcal{M}) \text {. }
$$

2. What is meant by the dimensions of a physical quantity? What are the uses of dimensional equations? Check the correctness of the equation $\mathbb{P}=h d g$
3. In the determination of ' g ' by a simple pendutum, 100 oscillations are taken and total time measured is 200s. The count of the stop watch is $0.1 S$. The Length of the pendufum measured with a metric scale of least count 1 mm is 1 m . Find the percentage error in the value of g ?
4. Write the advantages and disadvantages of dimensional analysis?
5. What are significant figures? The length, breadth \mathcal{L} thickness of rectangular sheet are $4.23 \mathrm{~m}, 1.005 \mathrm{~m} \mathcal{L}$ ㄹ 2.01 cm respectively. Give the area and volume of the sheet to correct significant figures?
6. Define uniform velocity and uniform acceleration? , derive relation
7. $S=u t+1 / 2 a t^{2}$
8. $V^{2}-U^{2}=2 a s$
9. What is meant by velocity time graph. Draw the velocity time graph of a body thrown vertically upward. Mark on the graph(a) maximum height(b) time of ascent and time of flight
10. If n is the velocity of the car, a is the maximum retardation possible, find the minimum distance in which it can be stopped.
11. Show the area under velocity time graph represents the distance travelled.
12. Draw the displacement - time graph of a freely falling body?
13. Can the speed of a particle ever be negative? If so, give an example. If not explain why?
14. Can 6odies with different velocities have the same acceleration? Explain
15. A stone is thrown vertically upward with a velocity $14.7 \mathrm{~m} / \mathrm{S}$. Calculate
16. The greatest height.
17. Time taken to reach the highest point.
18. Time of flight.
19. Velocity with which it strikes the ground.
20. A particle travels half a distance at $12 \mathrm{k} / \mathrm{h}$ and the remaining half at $18 \mathrm{~km} / \mathrm{h}$. Calculate the average speed.
21. Prove that the path of a projectile is a parabola.
22. Define a uniform circular motion. For uniform circular motion, prove that linear velocity

$$
V=r \omega
$$

17. State the law of parallelogram of vectors. Find the magnitude and direction of the resultant of two vectors \mathcal{A} and \mathcal{B}.
18. What is meant by centripetal acceleration? Derive the formula for centripetal acceleration.
19. Prove that, for a given velocity of projection, the horizontal range is same for θ and $(90-\theta)$
20. Prove that the Vectors $(i+2 j+3 k)$ and $(2 i+j)$ are perpendicular to each other.
21. Rain is falling Vertically with a speed for $30 \mathrm{~m} / \mathrm{S}$. \mathcal{A} woman rides a bicycle with a speed of $10 \mathrm{~m} / \mathrm{s}$ in the north to south direction. What is the direction in which she should hold her umbrella?
22. A stone tied to the end of a string 80cm long is whirled in a horizontal with a constant speed. If the stone makes 14 revolutions in 25s, what is the magnitude and direction of acceleration of the stone?
23. Write the three laws of motion
24. Establish the fact that the first and third laws of newton are in second law?
25. State Caw of conservation of momentum and prove it using
26. Second Caw of motion
27. Third law of motion
28. Distinguish 6etween static friction, limiting friction and 反inetic friction. How do they vary with the applied force?
29. Prove that the coefficient of static friction is tangent of the angle of repose.
30. Derive a relation for the safe velocity of negotiating a curve by a body in a banked curve with frictional coefficient μ.
31. Define
32. Angle offriction.
33. Angle of repose.
34. Why does a gun recoil? Derive the recoil velocity of a gun?
35. Define impulse. A cricket ball of mass 150 gm moving with speed of $12 \mathrm{~m} / \mathrm{s}$ is fit by a bat so that the ball is turned back, with a velocity of $20 \mathrm{~m} / \mathrm{s}$. Calculate the impulse received by the ball.
36. A bullet of mass 0.01 kg moving at a speed $100 \mathrm{~m} / \mathrm{s}$ strikes a wooden plank of thickness 0.1 m and emerges with a velocity $25 \mathrm{~m} / \mathrm{s}$. Find the resistance offered by the plank assuming it to be uniform.
37. \mathcal{A} bullet of mass 0.06 kg moving with a speed of $500 \mathrm{~m} / \mathrm{s}$ is brought to rest in 0.01 s . Find the impulse and the average force of the 6low.
38. A shot of weighing 1 kg is fixed from a gun weighing 5 ton with a velocity $1000 \mathrm{~m} / \mathrm{s}$. Find the velocity of recoil. Also calculate the force required to stop the gun in a distance of 0.25 m .
39. Explain the term 'work' and 'power'. How will you evaluate the work done by a variable force?
40. What is work-energy theorem?
41. Distinguish 6etween elastic and inelastic colfisions.
42. Derive an expression for the 反inetic energy of a moving body.
43. Discuss elastic colfision in one dimension. O6tain expression for the velocities of two bodies after such a colfision.
44. State and explain the law of conservation of energy. IClustrate the law in the case of 1. A freety falling body
45. An oscillating pendulum
46. An engine pumps 2000kgs of water in one minute to an average height of 10 m . calculate the power of the engine if 30% of the energy is wasted in the process.
47. A water pump of power 1.5 KW draws water through a mean height of 10 m to fill a tank $4 m \times 3 m \times 4 m$. Calculate the time taken to fill the tank.
Discuss the variation of acceleration due to gravity with (a) depth (6) altitude (c) shape of the earth
48. Derive the expression for (1) escape velocity (6) orbital velocity
49. Derive the expression for (1) gravitational potential (2) gravitational potential energy.
50. Obtain the expression for ' g '
$\mathcal{T H E} \mathcal{E N} \mathcal{D}$
