Chapter-10:

Mechanical

Properties of Fluids

CBSECLASS XI NOTES

Dr. SIMIL RAHMAN

soyderaulic
lift is used to lift sheamy loads.

* car lifts and jacks, hydraulic brakes, indent. ist chairs etc.
\rightarrow pressure exerted on the liquid

$$
p=\frac{f}{a}
$$

\rightarrow According to Pascal's law, the same pressure P is calso transmitted to the larger piston of cr-coss-sectional area A.

$$
\begin{aligned}
F & =P \times A \\
F & =\frac{f}{a} \times A \\
F & =\frac{A}{a} \times f
\end{aligned}
$$

SUみFACE Revision
Define surface. Tension Givel its units and dimer sons?

- surface tension
is the property by wirte of which the free surface of a liquid. at rest behaves like an elastic strechid. membrane tending to contract wo as to lcupy minimum surface area.

Surface tension can be measured as the force acting tangenDial to liquid surface land perpendicular to its unit length os an imaginary line drawn on the surf ice of the liquid:
surface tension $=\frac{\text { Force }}{\text { length }}$

what are the types of molecular forces?
'There care two types of molecular forcess

1. cohesive force 2, Adhesive force.

1, cohesive force
The force of attraction between mo lecules of same wubstan. ice is called ico-hesive force.

Isolid $>$ Iliquid $>$ Iras
2; Adhesive force
The force of
attraction between the molecules of differ int substances is called force of adhesion.
eg; Force of adhesion between paper and gum molecules.

Surface Energy.

* Define surface energy. prove that it is numericoly equal to the severs ce tension?
surface energy
Io f a liquid is the potertial energy per unit area of the liquid seerface. It is numerically. equal to surface tenseion
\therefore work done ins productag vas area $=S S T \times$ aria
* The sI unit of surf-
ace energy is $J_{m^{2}}$

rectangular wire frame $A B C D$ The $A B$ is movable Dip the wive frame. in soap solution, so that the film is formed over. the frame. Due to surfsace tension the film has a tendency to shrink and thereby $A B$ is pulled invicard direction. $A B$ can be kept in the wame position by giving equal and opposite force (dolunward direction)

Let ' 'l' be the long. th of the wire.
T - Force due to surface tension.
Then $F=T \times 2 l$
2 appears here
due to lew surfaces. If the wire $A B$ is pulled downward by ca
small distance ' x ' to the position $A^{\prime} B^{\prime}$. Then

$$
\begin{aligned}
\text { work } & =W=F \times x \\
& =T \times 2 l \times x_{1} \\
& =T 2 l x
\end{aligned}
$$

surface $=$ llork done in energy increasing sueFace area Increase in oof ace area.

* Explain Surface Tension on the basis of Molecular theory.?

consider three molecules A, B and C of a liquid: I he virudes indicate their sphere of influence
molecule A:- It is well. inside the liquid and is attracted equally is all directions by other molecules. Scanned by CamScanner

Therefore no resultant force acting an it.
molecule B:- more than half of its sphere of influence is below the liquid surface. More no. lecules care attracting it is the downward direction than in the upward direction. so ut experience la net Nnw. card pull.
molecule c:- The inward pull is maximum is mo. Lecule ' 'c. as it lies on surface. This is because lower half is full of molecules, upper half. is empty.

If ia molecule is brought to the surfwace from the interior, work has to be clone against the inward pull. There pore molechles or the surface have additional potential en orgy. Any stable system tries to have minimum energy. \therefore we should hawe minimum number of molecules an the seerkace to have minimum energy.
so the surface
area should be minimum \therefore the liquid tries to have minimum area and thereby, it behalves like a istreched elastic membrane.
Explain some examples which illustrate the existence of surface tension?
(1) stair of ca painting brush, when i dipped in witter spread out, but when taken out its hair cling to getter dive to surface tension, water film formed as tbem trend to contract to minimum area.

(2) If ca sewing needle is placed carefully on water surface, the needle rest there ${ }^{\text {evithout si- }}$ inking although the den. site is several times greater than that of water. It shows that water behaves like ca istreched membrane.

Argle of Contact
The angle bet-
ween the tangent to the liquid surface at the point of contact and the solid surface inside the liquid.

Note:

1. Angle of contract for a pure wisest and dean glass is ZER 0 .
2, For ordinary water and class $\theta=8^{\circ}$ (acute angle)
3; For mercury and. glass $\theta=140^{\circ}$ (obtuse)
Pressure difference across a liquid surface The surface
quid may. of a liquid may be concave, convex ar
plane. plane.
(a) concave surface

If the surf wace is concave the resultant force R on
on molecule M due to, surface tension T cacts in mpuard direction. ondecules-expariencing va net upward force. The molecule will be is equilibrium if pesure on concave side is more.

(b) convex surface

face is convex, the re sultan force R on mo. lecule M due to urface tension T acts in downward direction. nolecules-experiencing net downward force. The molecules will be is equilibrium if pressure on concave side is more.
(c) Plane surface.

If the surface is plane indecule pulled equally in all directions, No net force acts on it. No excess pressure, insiide. or outside the liquid surface.
asote:- s curved surfce will be is equilibrium, only if there is an excess oof pressure on the concave side of the cured surface.
Give expressions for exc-
less of - pressure p
(a) Inside a drop
(b) Inside a bubble infree space
(c) Inside a bubble in a liquid.
(a) Inside a drop
excess pressure $\left.P=\frac{2 T}{R}\right\}$

id is riconcave. Let r^{\prime} be 'the radius of concaus meniscus, θ-angle of contract. and 'h' height of liquid cot un raised in the tube from the level of liquid outside.

\rightarrow The pressure just below the concave side of the liquid meniscis is the tube will be less thin that above lit by ian amount $p=27 / r^{\prime}$
\rightarrow pressure just above the meniscus in the tube $=H$ (atm pressure)
\therefore pressure at C $=H-2 T / r^{\prime}$

$$
\begin{aligned}
& \text { pressure at }=\text { pressure }_{A} B \\
& \text { at }
\end{aligned}
$$

ie; $H=H-\frac{2 T}{\mu^{\prime}}+h \rho g$

$$
\begin{align*}
& \frac{2 T}{r^{\prime}}=h \rho g \\
& \because=\underbrace{\frac{2}{r^{\prime} \rho g}} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& \triangle O D E, O D=r^{\prime}, D E=r, \\
& \cos \theta=\frac{D E}{D O}=\frac{r}{r^{\prime}} \\
& r^{\prime}=\frac{r}{\cos \theta} . \\
& (1) \Rightarrow h=\frac{2^{T} \cos \theta}{r \rho g}
\end{aligned}
$$

\rightarrow This expression is called nascent formela
\rightarrow In case of water and water-like liquids wbinch unset the tube
$\theta \approx 0$ $\therefore \cos \theta=1$

* How does temperatu. re affect surface tension?
surface tension
eases when tempe
* pressure of impurity also changes the value of surface tension.
* Explain the cleansing action of detergesits.?

The dirty clio. the having greasy staims cannot be ilea ned by washing them in water. Because wa. ter cannot wet grease f dirt. But when deter gent is laded to wa ter, it reduces surface tension, wets the igreawe Detergent molecule attract water at one end and grease at the other end. when clothes are rinsed in water, the greasy dirt is masted away by run. king mater.
$*$ What is called viscosity?
viscosity of a
fluid is the property of the fluid by virtue of which the livid epposes the relative motion bet wien its useccessive layers..

* on what factors viscous force depend upon? give the expression for viscous force. Define colefficiert of viscosity?
consider a liquid (5) flowing over a toriescental solid surface in the form of yard Mel layers. Ike layer at the top possesses maxi mun velocity.

solid surface
Due to wis cosily a for ice F acts in opposite direction to destroy the relative motion.

Anis viscous
force F. depends llpon the following factors
1, It is directly proper trinal to the varia of the layers in cont. act.

$$
F \propto A
$$

2; It is directly props rational to velocity: gradient between layes.

$$
\begin{aligned}
& F \propto \frac{d v}{d x} \\
\therefore \quad & F \propto A \frac{d v}{d x} \\
F= & \eta^{A} \frac{d v}{d x}
\end{aligned}
$$

$$
\begin{gathered}
U=m g=V \sigma g=\frac{4}{3} \pi a^{3} \sigma g \\
\therefore U=\frac{4}{3} \pi a^{3} \sigma g
\end{gathered}
$$

(c) Miscous force f acting mpulard

$$
F=6 \pi a \eta^{2}
$$

where ' v ' is the velocity of the ball. when the ball falls through the liquid; its velocity in creases egradivally This grami ta tional force is balanced by upthrust and iisicous. force.
\because The ball continues to moue with uniform velocity. Intis velocity is called terminal velocity it terminal velocity,
alight of $=$ upthrust + the ball viscous force $\frac{4}{3} \pi a^{3} \rho g=\frac{4}{3} \pi a^{3} \sigma g+6 \pi a \eta v$
$\therefore 6 \pi a \eta v=\frac{4}{3} \pi a^{3} \rho g-\frac{4}{3} \pi a^{3} \sigma g$
$\therefore 6 \pi a \eta v=\frac{4}{3} \pi a^{3}(P-\sigma) g$

$$
\begin{aligned}
& \therefore v=\frac{4}{3} \frac{\pi a^{3}(\rho-\sigma) g}{6 \pi a \eta} \\
& v=\frac{2}{9} \frac{a^{2}(\rho-\sigma) g}{n} \\
& v=\frac{2}{9} a^{2} \frac{(p-\sigma)}{\eta}
\end{aligned}
$$

If ${ }^{\prime}{ }^{2}$ is neglig.
ible compared with ' ρ '

$$
v=\frac{2}{9} \frac{a^{2} p g}{n}
$$

$a \rightarrow$ radius
Fluid Flow

* Differentiate stream blow.

3, velocity.	3, velocity
at each	at wane
point rem-	point ware-
wins canst-	es with time
ant	
4;, Reynolds	4., Reynolds
number lies	number gre
between 0	later than
to 2000	3000

areas of the pipe at A and B respectively. Liquid enters with normad velocity V_{1} and lea mes with velocity V_{2} :
 of liquid $=$ of liquid Entering leaving B nd per second.

$$
\begin{gathered}
Q_{1}=Q_{2} \\
a_{1} v_{1} P=a_{2} v_{2} P \\
a_{1} v_{1}=a_{2} v_{2}
\end{gathered}
$$

$a v=$ constant. I his eqmatron is called as equation of continuety

velocity is inv
ersly proportional to cross sectional area.
4 State and prove. Bernoulli's theorist.
statement: It states that,
in a streamline How of ia fluid, the total energy (yoresswre energy, pot ontial energy and kinetic energy) of a small amount of the fluid flowing without any friction remains constant the ought. its How.
pressure + potential + energy energy.

$$
\frac{\text { Kinectic }}{\text { Energy }}=\text { canst } .
$$

Pressure $+P \cdot E+K \cdot E=$ const
energy
$\frac{P}{P}+g h+\frac{1}{2} v^{2}=$ canst
proof
consider a liquid of density P flowing. thorough wa pipe of wa onjing area of coss section.

Let A and B be the two sections of pipe perpendicular to the direction of flow.
at A
$V_{1} \rightarrow$ volume of liquid od entering the pipe
p, \rightarrow pressure

$a_{1} \rightarrow$ area of cross sect
$v_{1} \rightarrow$ velocity of liquid
$h_{1} \rightarrow$ height from freferen ie level.

* llork done ion unit mass of liquid cat A

$$
=\frac{P_{1} V_{1}}{m}=\frac{P_{1}}{\rho}
$$

W ark done bey unit mass of liquid at B

$$
=\frac{p_{2} V_{2}}{m}=\frac{p_{2}}{\rho}
$$

Net wort done on unit
mass of liquid flowing from. A to B

$$
=\frac{P_{1}}{\rho}-\frac{P_{2}}{\dot{\rho}}
$$

* Gain in potential energy
when unit mass of liqu-
id flows from A to B

$$
=g h_{2}-g h_{1}
$$

* Gain in kinetic energy when unit mass of liquid flows from A to $B=\frac{1}{2} V_{2}^{2}-\frac{1}{2} Y_{1}^{2}$
* Gain in P.E \& K.E ch writ mass

$$
=\left(g h_{2}-g h_{1}\right)+\left(\frac{1}{2} v_{2}^{2}-\frac{1}{2} v_{1}^{2}\right)
$$

According to wort-eneray theorem

$$
\begin{aligned}
& \frac{p_{1}}{\rho}-\frac{p_{2}}{\rho}=\left(g h_{2}-g h_{1}\right)+ \\
& \left(\frac{1}{2} v_{2}{ }^{2}-\frac{1}{2} v_{1}^{2}\right) \\
& \frac{p_{1}}{\rho}+\frac{1}{2} v_{1}^{2}+g h_{1}=\frac{p_{2}}{\rho}+\frac{1}{2} v_{2}^{2}+g h_{2}
\end{aligned}
$$

Thus Bernaullis' theorem is yeroned.
Note:

$$
\frac{P}{\rho}+\frac{1}{2} \dot{v}^{2}+g h=\text { constant }
$$

$\frac{p}{\rho g} \rightarrow$ pressure head
$\frac{v^{2}}{2 g} \rightarrow$ velocity head. $h \rightarrow$ gravitational head.

Applications
1, lift of an aircraft a he wings of an aeroplane are so designed that their upper surfaces are more curved than the lower surfaces. when the airivaft is mauiing, the air moves faster at the upper surface than the low. or surface. As a res. lilt the pressure of air on the upper sur face of the wing is less than the pressure at lower surface.

2, Blowing of mops of houses during storm

During storm velocity of mind or air above the roof is greater. It reduces the pressure (vaboul). so. pressure at a point
just below the roof is mare. so rook lifts up.
$\rightarrow \underset{\sim}{\text { air }}$
velocity less $P \rightarrow$ more
3., Atomiser/sprayer 4; magnus effect -sui ing bowling

5; cylindrical shape of pullet.

