Chapter-13:
Kimetic IMbeory

CIBSJE CTASEAG

Dr. SIMIL RAHMAN

KINETIC THEORY OF GASES
1, bt ain perfect gas equal tron?

According to boyle's law

$$
p \propto \frac{1}{v}
$$

According to charles's law $P \alpha T$

$$
\begin{gathered}
p \propto \frac{T}{V} \\
P \vee \alpha T \\
P V=R T
\end{gathered}
$$

umber col moles

$$
P V=n R T
$$

Avogadro's o umber number of m. alecules in one mole of ugas is icalled delogadre's number ($\left.N=6.023 \times 10^{23} \mathrm{~mol}\right)^{\prime \prime}$
2, state postulates of $k i-$ metic theory of gases?

1. molecules of gas ware hard, smooth and perfs ectly elastic spheres.
2, The molecules are sup. posed to be point mauses. size vf a inolecule is inegligible compared to the distance between them.
2. There is no force of att Taction or repulsion Scanned by CamScanner
between therm.
4; The molecules are in a state if random motion - mailing with all passible velocities. is wall possible direct ions
5; During their motion they collide with each other and also. with the walls of the container.
3. Betimes successive coMisions, the molecules mail in straight lines with uniform welocity the distance travelied between two use. cessine collisions is called free path.
4. Dime spent in a coli sion is negligible compared to the time taken to traverse the mean free path.
5. The mean kinetic Eneorgy of tine molecule is a constant wat a ugiven temperature us. and is proportional to absolute temperatwee.
6. Explain Kinetic Interpie tation of pressure and temperature?

4; Derive an expression for pressure exerted by a gas on the basis of KPnoetic theory.

time taken for sone coll-

$$
\text { ixion }=t=\frac{\text { distance }}{\text { velocity }}=\frac{2}{v}
$$

According to Necuton's' second taw
Farce exerted on the mall

If there ware ' m ' number of molecules. only $\mathrm{n} / 3$ molecules will move along x-idirection.

Iatcal force exerted on the wall $\quad W=\frac{n}{3} m v^{2}$ pressure exerted on the wall $=P=\frac{\text { force }}{\text { area }}=\frac{n m v^{2}}{3}$

$$
P=\frac{1}{3} m n v^{2}
$$

substituting \bar{c}^{2} for v^{2}

$$
\begin{aligned}
& P=\frac{1}{3} m n \bar{c}^{2} \\
& P=\frac{1}{3} P \cdot \bar{c}^{2}
\end{aligned}
$$

5; Derive the relationship between .Kinetic Energy and temperature of a snolecule of the gas.? pressure $P=\frac{1}{3} \rho \vec{c}^{2}$

$$
\begin{aligned}
& P=\frac{1}{3} \frac{M}{V} \bar{c}^{2} \\
& P V=\frac{1}{3} M \bar{C}^{-2}
\end{aligned}\left\{\begin{array}{r}
\because \rho=\frac{M}{V} \\
\because P V=R T \\
R T
\end{array}=\frac{2}{3} \times \frac{1}{2} M C^{-2} \quad \because K E=\frac{1}{2} M \bar{c}^{2}\right.
$$

vuerage kinetic enerugly of one male of gas,

$$
\overrightarrow{K E}=\frac{3}{2} R T
$$

$\overline{K E}$ of un e inolecules of the ugas

$$
\overrightarrow{K E}=\frac{3}{2} \frac{R}{N} T
$$

$[N$-no of modewiles in de]

$$
K E=\frac{3}{2} K T
$$

$$
\widehat{K E} \propto T
$$

6; Deduce perfect gas equation from kinetic theory of gases: $K \cdot E$ of ane molecule $=\frac{3}{2} K T$ $K \cdot E$ of the gas $=\frac{3}{2} n k T$

$$
\begin{aligned}
& P=\frac{1}{3} P \dot{c}^{2}=\frac{1}{3} \frac{M}{V} \bar{c}^{2} \\
& P V=\frac{1}{3} M \bar{c}^{2}=\frac{2}{3} \times \frac{1}{2} M \bar{c}^{2} \\
& P V=\frac{2}{3} \overline{K E} \\
& P V=\frac{2}{3} \times \frac{3}{2} n K T \\
& P V=n K T
\end{aligned}
$$

7. Write down the expresion for rms velocity, mean free path.
pressure $P=\frac{1}{3} P \bar{C}^{2}$.

$$
\begin{aligned}
& \bar{C}=\sqrt{\frac{3 P}{\rho}} \\
& P=\frac{1}{3} \frac{M}{V} \bar{c}^{2}, \quad P V=\frac{1}{3} M \bar{c}^{2} \\
& R T=\frac{1}{3} M \bar{c}^{2} \\
& \bar{C}=\sqrt{\frac{3 R T}{M}}, \bar{c} \alpha \sqrt{T}
\end{aligned}
$$

Mean free path:- due.
rage distance bet. en successive collisions.

$$
\lambda=\frac{1}{\sqrt{2} \pi d^{2} n}
$$

d-diameter of mole. vile.
n - number of molecinles/udume.

