Chapter-15:

Waves

CBSE CLASS XI NOTES

Dr. SIMIL RAHMAN

$$
V=\sqrt{\frac{E}{\rho}}
$$

where E - modulus of elasticites
P - density of me indium

* write expressions for velocity of longitudesal nave (i) in ia wo. lid (ii) in la liquid
(\%) solid.

$$
v=\sqrt{\frac{y}{\rho}}
$$

where y - young's mod-
ρ - udensity.
(ii) In un liquid

$$
v=\sqrt{\frac{B}{\rho}}
$$

\qquad
where β-bulk modulus of liquid
P- density.

* Derive Newton's forme a for velacity of lon gitudinal vane is an elastic medium. What is laplace's correction: to the Newton's formula. Newton's formula.

Newton cassel-
med that when sound travels is a gaseales medium, the change takes place in the medium medium, the change-la-icondensations tate ph
kes place in the medium rarefractions tale in
is isothermal in natu-lace quickly and Scanned by Cam scanner
re.il; when sound (3) travels, the temperature remains constant.
used of sound

$$
V=\sqrt{\frac{P}{\rho}}
$$

$p \rightarrow$ pressure
$\rho \rightarrow$ density
at S.T.P $P=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

$$
\begin{gathered}
\rho=1.293 . \mathrm{kgn}^{-3} \\
V=\sqrt{\frac{1.013 \times 10^{5}}{1.293}}=280 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

$$
V=280 \mathrm{~m} / \mathrm{s}
$$

The experime-
Ital value of velocity of sound in air lat S.T.P is $332 \mathrm{~m} / \mathrm{s}$.

The result fr e
con Neution's formula is 16% less than the experimental value.
Laplace's correction
Laplace poin
ted out that it ul us wrong to assume that when sound travels in a gaseous medium, the changes are isothermal. Be assumed condensations and
no exchange of heat ty of sound. energy as ugas medicin is poor conductor of heat. Laplace said that changes are not isothermal, achy are adiabatic in nature velocity of sound

$$
V=\sqrt{\frac{\gamma P}{\rho}}
$$

where $P \rightarrow$ pressure
ρ-udensity
γ - Ratio of specific heats of ugas
$\gamma=\frac{C_{P}}{C_{V}}$ for vair
\star velocity of sound at ST P.

$$
V=\sqrt{\frac{\gamma P}{\rho}}=331.5
$$

anis valve ca
ores with the experime ital value.
\# Write the various fac tors affecting the welocity of sound in air.?

The factions lite density of a gas, temperature, presence of moisture, wind use ed affect the veloce-
$*$ Discuss the effect of pressure and tempera twee of air on velacity of sound in wire?
(a) Effect of pressure. velocity of sound.

$$
v=\sqrt{\frac{\gamma P}{\rho}}
$$

$p \rightarrow$ pressure, ρ-density It constant temperatwee, p / ρ remains canstant.
\therefore The change in press. wee has no effect on the speed gig wound. velocity of sole nd does not depend upon change is presser. re.
(b) Effect of temperative velocity of socend

$$
v=\sqrt{\frac{\gamma P}{\rho}}
$$

$$
V=\sqrt{\frac{\gamma P V}{M}}
$$

ias $\rho=\frac{M}{V}$.
vent $P V=R T$

$$
\therefore V=\sqrt{\frac{\gamma R T}{M}}
$$

$$
1 \cdot \vee \propto \propto \sqrt{T}
$$

\therefore velocity of sound wa vies idiriectily as the square root of absolute temperative.

If v_{1} land v_{2} are speeds of sounds at temperatures T_{1}, and T_{2} respectively then

$$
\frac{V_{1}}{V_{2}}=\sqrt{\frac{T_{1}}{T_{2}}}
$$

Let V_{0}-velocity of isound wat $0^{\circ} \mathrm{C}$
y_{t} - velocity of wound at $t^{\circ} \mathrm{C}$

$$
\text { Then } \frac{V_{0}}{V_{t}}=\sqrt{\frac{273}{273+t}}
$$

$$
\frac{V_{t}}{V_{0}}=\sqrt{\frac{273+t}{273}}
$$

$$
v_{t}=v_{0} \sqrt{\frac{2 \dot{7} 3+t}{273}}
$$

$$
\begin{aligned}
& \text { If } t=0^{\circ} \mathrm{C}, V_{0}=331.1 \mathrm{~m} / \mathrm{s} \\
& \text { If } t=1^{\circ} \mathrm{C}, V_{t}=V_{0} \sqrt{\frac{273+t}{273}} \Rightarrow
\end{aligned}
$$

thy for $r^{\circ} \mathrm{C}$ rise of temp ert wire

$$
V_{1}-V_{0}=331.7-331.1
$$

Scanned by Camscänner ${ }^{6}$

$$
\therefore v_{t}=v_{0}+0.6 t
$$

For every ic
rise of temperatwe velocity of sound
increases by $0.6 \mathrm{~m} / \mathrm{s}$.

* Now does humidity affect the welocites of sound in lair.
$\begin{aligned} & \text { velocity of } \\ & \text { wound } \\ & \text { vol }\end{aligned}=\sqrt{\frac{\gamma P}{\rho}}$

$$
\alpha \alpha \frac{1}{\sqrt{\rho}}
$$

density of moist are is. less than the densetip of dry vair.
velocity of so-
fund is inversely pro portional to square root of density.
\therefore velocity g sound in moist air is ogrelater than that in dry air.

* what is meant by progressive wave? A wiame which travels continueduly in a medium. in the same direction without any change in its amplitude is
icalled progressive
weave or trecauelling mane.

It can be trans worse or longitie diital.

* Derive the displacerint relation for a par aggressive wave?
suppose that a plane simple hormanic wave travels. from origin 0 along the posituie direction.. of x-acis

cement of a particle lat ' O ' at any time ' t ' is given by.

$$
y=A \sin \omega t=A \sin \frac{2 \pi}{T} t
$$

where A is the amplitude of SHM, exc cured by the partiche and w is its anregular frequency.

Let us find the displacement of particle at P, at a distance of x from Scanned by Camscanner
the origin at time t
the ludalle sta
rotting from ' 0 ' would reach point P after va time $\left(\frac{x}{v}\right)$.so particles at ' p ' starts libra ting lat va time $\left(\frac{x}{v}\right)$., little later than the particle cat © 0 .
\therefore There is va tome lag of $\frac{x}{v}$.
\therefore Displacement of partiidle ' P ' cat ' t ' is.:

$$
\left\{\begin{array}{l}
y=\Delta \sin \frac{2 \pi}{T}\left(t-\frac{x}{v}\right) \\
y=A \sin \frac{2 \pi}{T} \cdot(v t-x) \\
y=A \sin \frac{2 \pi}{v T}(v t-x) \\
y=A \sin \frac{2 \pi}{v}(v t-x)
\end{array}\right.
$$

If ϕ is the
 epoch.

[Dis yolacemend aqua tion of progressive mane if it travels is $+x$ axis-directions, If the mane it ravels along'-x' axis.
$\left\{\begin{array}{l}y=\sin \left[\frac{2 \pi}{\lambda}(v t+x)+\phi\right]\end{array}\right.$
equations (1) os
and (3) are displacement equations of pro gressive males, they are also called vas ila. we functions
Note:

* wince $\omega=\frac{2 \pi}{T}=\frac{2 \pi \nu}{\lambda}=\omega$
* propagation $\quad k=\frac{2 \pi}{\lambda}$
displacement equations can also be written. as

$$
\begin{aligned}
& y=A \sin (\omega t-k x+\phi) \\
& \sin \\
& y=A+x^{\prime} \operatorname{cosis} \\
& y=A \sin (\omega t \rightarrow x+\phi) \\
& \rightarrow-x^{\prime} \text { axis }
\end{aligned}
$$

$$
\text { * wave speed } v=\frac{w}{k}
$$

* what are the charac teristics of a progress. we wave?

1. A he disturbance alum 'ys travels forward' and transferred from one particle to another particle.
2; The wane velocity is different from particle velocity.
Scanned by Camscanner

3; Aransuerse progressiwe waves can be cha racterived by crests and troughs. Longituidinal progressive wewis rain be characterived by condensuatiion and rarefactions.
4., each particle in the. medium vibrates to and fie with constant. amplitude and frequency simple haemanically.
5. It he vibration of each particle begins la little later than that io its preceding particle.
6; No particles permagently int driest.

* state the principle of usperposit ion?

It states that when two or more waves travel in a medium is such la way that each wave represents its seperate motion. indimiderally, then the resultant displacement of particle of the medium at anef time is equal to the
vector sum of the Infince
idividual. displacerintis.
Resultant displacement

are Individual odisplcacements.

* luhat is meant by interference?

The yhenomen
an up superposition of two weaves, itorameling continously, ha wing same amplitude, same frequency, same wavelength, isame phase or constant phase difference, producing maximum intensity at some points land minimum intensity at some other points, is called interference of two waves.

* what are the types if interference? Explain a them
types of interference
- (i) Constructive interterence.
(ii) Distructive Interfere
constructive Interferencl.
when a crest of a wave meets a crest. of another wave (or) trough of a wawe meets trowigh oof another wave, it roses. its in maximum campli tide and maximum intensity. It is called constructive inter peen ice.
* condition for construe ictive Interference.
path difference

$$
\delta=n \lambda
$$

where $n=0,1,2,3 \ldots \ldots$.
Destructive Interference.
when a cure
st of vo we wave meets a trough of another wave, it results in mini mum amplitude and minimum intensity. It is called destructive Interference.
4 What are called statioratty waves?
whenever two progressive waves if the wame wavelength and amplitude tran. vel' with same speed
through la medium in opposite direction and superpose each other, they give rise to what is called stanriding imams ion istiatio nary manes.

* what are nodes and anti nodes?
Nodes:-
In strationaiuy waves, there are wore points wat which isplacement is zero, camplitrude is zero land strain is maximum and maximum change is presswee and udensity, walled nodes.
Astisiodes:-
waves there: points. lat which dish cement is maximum, strain iss tess and no change hin pressure and intensity, called wati nodes:

* uctiat are cbaracteri stics of stationary wabes?
1, stationary manes are not progressive crests or trowegh,coimpressions ar oraref asections do not tr caudal forward or backward
2 Energy iss sot transcered from one par ticlo do another par. tickle

3. Every particle, except the particles cat nodes, executes SHM with sane period.
4. Amplitude of virbratiion of different martioles is different. It is zen at nodes and maximum at ardinoodes
5. Distance between two consecutive nodes ur antinodes is $\lambda / 2$
6; Distance between two consecutive node ar antinode: is $\lambda / 4$
7; change is pressure and density' is maximum at nodes wand minim. um lat antinodes.
6. The direction of mots ion of particles in
cone csegment is copposite to that of partiveles in prececding or csuceeding usegments.

* what is meant by fusindamental freq wency, quertone and harmonics?

Ihe lowest frequency is called fuenda. mental frequency.
oll the ather fr-
equencies other than fundamental frequlencies care called overtiones. The integral multipple of fundamental frequon= cy is called harmonis

* Aind the ratio og dereuquencies for socisterent modes of voibrdations in istreched rotring? consider la
istring which is streiched between tweo points (fixced). when it is plucked, the mame produced gets reflected back results in stationary maver forming nodes at fixced ends.
(a) when the string wibrates with ane segment.

$$
\begin{aligned}
& \quad l=\lambda / 2 \\
& \leftarrow l=\lambda / 2 \rightarrow \\
& \quad \lambda=2 l
\end{aligned}
$$

$$
\nu=\frac{v}{\lambda}=\frac{v}{2 l}>
$$

$\nu_{1}=\frac{V}{2 l}$ Peris called fundamen. tal Aequency or first Tharmonic.
(4) ruchen the string wiforates with two isegments.

$$
\begin{aligned}
& l=\lambda \\
& V_{2}=\frac{V}{\lambda}=\frac{2 V}{2 l}=2\left(\frac{V}{2 l}\right) \\
& \therefore V_{2}=2 V_{1}
\end{aligned}
$$

ν_{2} is called $2^{\text {nd }}$ harmo nic or $I^{\text {st }}$ overtone (i) wihen the string wis brates with th.ree segments.

$$
l=\frac{3 \lambda}{2}
$$

$$
\therefore \lambda=\frac{2 l}{3}
$$

$$
\nu_{3}=\frac{V}{\lambda}=\frac{V}{\frac{2 l}{3}}
$$

$$
V_{3}=\frac{3 V}{2 l}=3\left(\frac{V}{2 l}\right)
$$

$$
\therefore \nu_{3}=3 v_{1}
$$

ν_{3} is called third haemanic or $2^{n d}$ overtone
es care in the frequenci-
$\nu_{1}: \nu_{2}: \nu_{3}=\frac{V}{2 l}: 2\left(\frac{\nu}{2 l}\right): 3\left(\frac{\nu}{2 l}\right)$

$$
\nu_{1}: \nu_{2}: \nu_{3}=1: 2: 3
$$

Nonce call ha
rmonics (even or add)
wa presents

$$
\text { velocity } y=\sqrt{\frac{T}{m}}
$$

fundemetal prequences

$$
\nu=\frac{V}{2 l}=\frac{1}{2 l} \sqrt{\frac{T}{m}}
$$

* state the laws of transverse miderations of istreched string?

$$
\nu=\frac{1}{2 l} \sqrt{\frac{T}{m}}
$$

Scanned by CamScanner

1, Fundamental frequienay (ν) is in uersely proportional to lenges (l) of string when. tension (T) and linear density (m) are const. ants.
$V \propto \frac{1}{l}$ when T and
m are constants
2. Fundamental frequen cay (\mathcal{V}) iss direct le proportional to the square root of tension T/ when length (l) and linear density (m) are constants.

V次 ' when ' l ' and T are constants. 3, Fundamental frequenay (ν) is inversely proportional to the square root of linear density (\sqrt{m}) when l land 4 are constants. $\sum \propto \frac{1}{\sqrt{m}}$ when w T are constants * Describe the various rhodes of vibrations
of air columns in open
organ pipe and show that open organs pipe cast produce all farmomics?
consider aa tube of length ' l ' open cat both ends. when we place an excited teriing fort over cone of the ends istiationary manes are produced. (a) Fundamental frequency

$$
l=\frac{\lambda}{2}
$$

$$
\lambda=2 l
$$

$\nu_{1}=\frac{V}{\lambda} \quad\left\{\begin{array}{l}\nu_{1}=\frac{V}{2 l}\end{array}\right\}$-pen
damental frequ.
ency or first harononic.
(b) First ourtone

Scanned by CamScanner

$$
\begin{aligned}
& \nu_{2}=\frac{V}{\lambda} \\
& \nu_{2}=\frac{V}{l}=\frac{2 V}{2 l}
\end{aligned}
$$

$$
\nu_{2}=2\left(\frac{V}{2 l}\right)=2 \nu_{1}
$$

$2^{\text {nd }}$ harms mic pst puerto. ne.
second overtone
(c)

$$
\begin{aligned}
& l=\frac{3}{2} \lambda \quad \lambda=\frac{2 l}{3} \\
& \lambda=\frac{2 l}{3} \quad V_{3}=\frac{V}{\lambda}=\frac{V}{\frac{2 l}{3}} .
\end{aligned}
$$

$\therefore V_{3}=\frac{3 V}{2 l}$
$V_{3}=3\left(\frac{V}{2 l}\right)=3 V_{;}$ $\left\{\begin{array}{l}\nu_{3}=3 \nu_{1} \rightarrow\end{array} \begin{array}{l}3^{\text {rd }} \text { harm } \\ 2^{\text {nd }} \text { vic } \\ \text { overtone }\end{array}\right.$ ratio of frequencies

$$
\begin{aligned}
& \nu_{1}: \nu_{2}: \nu_{3}=\frac{V}{2 l}: 2\left(\frac{V}{2 l}\right): 3\left(\frac{V}{2 l}\right) \\
& \nu_{1}: \nu_{2}: \nu_{3}=1: 2: 3
\end{aligned}
$$

Anus in uppers pipe (organ), wall harmonics care present. Inhere fore it is preferred is call inusical Instruments. Ache general equation for frequency in open pipe $2=n\left(\frac{V}{2 l}\right)$
where $n=1,2,3 \ldots \ldots$

* Discribe the various Modes of vibration in air columns in closed pipe. (organ). Show that 2 closed pipe cart produce only odd harinoonics?
consider a tube of length. ' 1 ' cooused lat ven e end and opened it the other end placed ian excited tinning fork over the open end. A stationary mane is produced; va rode is formed lat the closed and and ai antinode is formed at the open end.
(a) Fundamental preques nay

$$
\begin{aligned}
& l=\lambda / 4 \\
& \lambda=4 l
\end{aligned}
$$

(b) First overtone.

$\nu_{2}=\frac{V}{\frac{4 l}{3}} \Rightarrow \nu_{2}=\frac{3 V}{4 l}$
$\nu_{\alpha}=3\left(\frac{V}{4 l}\right)=3 \nu_{1}$
\rightarrow First over tone for Third hor manic
(c) second overtone

$$
\ell=\frac{5 \lambda}{4}, \quad \lambda=\frac{4 l}{5}
$$

$$
\begin{aligned}
& l=\frac{5 \lambda}{4} \quad \lambda=\frac{4 l}{5} \\
& \nu=\frac{V}{\lambda} \quad \nu_{3}=\frac{V}{\frac{4 l}{5}}=\frac{5 V}{4 l} \\
& \nu_{3}=\frac{5 V}{4 l}=5\left(\frac{V}{4 l}\right)=5 \nu_{i}
\end{aligned}
$$

$$
\therefore \nu_{3}=5 V_{1}
$$

\rightarrow Fifth harmonic or second overtone
Ratio of frequencies:

$$
\nu_{1}: V_{2}: V_{3}=\frac{V}{4 l}: \frac{3 V}{4 l}: \frac{5 V}{4 l}
$$

$$
\nu_{1}: \nu_{2}: \nu_{3}=1: 3: 5
$$

only odd harmonnics are present in closed organ pipe.

Expression for frequ ency is

$$
\nu=(2 n+1) \frac{V}{4 l}
$$

where $n=0,1,2,3 \ldots$. .

* What is meant by end correction? give the exp. ression for the same?

The antinode
formed at the open end will newer coincide with the end of the tube. It will project, outside by an amount ' e ' uhich is called end correction. If d^{d} ' is the diameter of the tube end correction

* What are beats?

A he superposidion of two sound waves inf necerly equal frequencies travelling in the same direction in a medium produces regular variation in the intensity of sound with time. Ah is phenonenon is called was beat. The no of beats heard
per second is called beat frequency. It is equal to the difference in frequency?
Beat frequency $=\nu, \sim \nu_{2}$
graphical representation.

$y+\operatorname{Imp}$
Explain Doppler effect. obtain tie general expo ession for apparent frequ ency of Sound?
Doppler Effect:-
The phenomenon of the apparent change in the frequency of sound produced by the source heard by the lister when there is a relative motion between the source and the listener is va-
lied oloppler effect.
Derivation for apparent frequency.
$V \rightarrow$
s

$$
V_{s} \rightarrow
$$

consider ia so.
vice (S) producing iso. ind waves of frequen
icy ν Let v be the melo. city of sound in the medium
$V_{S} \rightarrow$ welacity of sound m owing towards lis. timer L.
$V_{L} \rightarrow$ velocity of listener moving away from the source.
(a) when listener land source are at rest Ret ' v ' be the velocity of sound and λ be the wave length of sound male
frequency $\nu=\frac{V}{\lambda}$

$$
\lambda=\frac{V}{2}
$$

(b) when source moves towards listener with velocity V_{s}
apparent change ios w. cavelenglts when S moves. towards L. Relative Melocity of sound w.r.t coerce is

$$
v-v_{s}
$$

apparent. wavelength
(c) Li stoner moves away from source with velocity V_{N}

There is van apparent change in ere quincy of sound hearord by listener:

Relative velocity of sound w.r.t listner is $V-V_{L}$.
\therefore Apparent $\quad \nu^{\prime}=\frac{V-V_{L}}{\lambda^{\prime}}$

$$
\left.\begin{array}{l}
\nu^{\prime}=\frac{V-V_{L}}{V-V_{S}} \\
2
\end{array}, \nu^{\prime}=\left(\frac{V-V_{L}}{V-V_{S}}\right) \nu\right\}
$$

This is the
expression for the app brent frequency of uso lind heard by the listener.

Special Cases
case 1. Listener at rest land source in motion
(a) when source moves towards the listener athd listener is at rest
(b) source moves away from the listener, Listener at rest
$(-u e) S_{0}^{5}$
$\leftarrow V_{S}$ (rest)
$y_{L}=0$

$$
\therefore \nu^{\prime}=\left(\frac{V}{V-V_{S}}\right) \nu
$$

$$
\nu^{\prime}=\left(\frac{v}{v+v_{s}}\right) v
$$

case 2.) Listener is motion and source cat rest.
(va) Listener moues towards wowree and socurie is at rest.

$$
\begin{aligned}
& \xrightarrow{\mathrm{S} \rightarrow} \\
& { }^{*}{ }^{L} \text { (rest? } \\
& V_{L}=0 \\
& \therefore 2!=\left(\frac{V^{\prime}}{V-v_{s}}\right) \nu^{\circ} .
\end{aligned}
$$

 from the source and source is lat rest.

$$
\begin{gathered}
\substack{V_{S} \\
\therefore \nu^{\prime}=\left(\frac{V-V_{L}}{V}\right) \nu}
\end{gathered}
$$

Case 3: when both the spevice and the

- listener care in motion.
(a) source ind Listener are moving talleards each other

(b) Source and Listener care mowing weedy from each ether ($+v$) $V_{s}(-\dot{e r})$ scanned by camscanner

$$
\nu^{\prime}=\left(\frac{V-V_{L}}{V+V_{S}}\right) \nu
$$

(c) source moues away from listener and listener moves tola. reds the soure.
(d) Listener unoues awlay from the solver land source moues $\xrightarrow[S \rightarrow]{\text { towards the listener }}$

$$
V_{s}
$$

$$
\gamma_{1}
$$

$$
\text { (}+ \text { ne } \text {) }
$$

$$
\therefore \nu^{\prime}=\left(\frac{V-v_{L}}{v-V_{S}}\right)^{\nu}
$$

* If wind blows mith a velocity ' ω ' is the direction of wet. ocity of wound (V) resultant velocity is $v+\dot{w}$

$$
V^{\prime}=\left(\frac{V+\omega-V_{L}}{V+\omega-V_{S}}\right) \nu^{0}
$$

* If wind blows with la velocity ' n ' in ca
direction iopposite to that of V .

$$
V^{\prime}=V-\omega
$$

$$
\nu^{\prime}=\left(\frac{V-w-\dot{V}_{N}}{V-w-V_{S}}\right) \nu
$$

* Write some applicatio ns of Dospler effect.
(1) In estimate the spesed of isubmarine (SONAR)

The wittriaso nic waves toransmithed from la whip. ugets refleicted from submarine. Ahere is a ishift is the frequ. ency b/w the transmi. tted and refilected wave from which. we locity tof submarine can be measured.
(2) Ho estimate the is eed of autamobile, veroplane etc.
(3) Aio estimate the vilouity and rotiation of the sun
(4) Aco Jrack artificial satellites.
note:
(1) Doppler epfect is vaymnetric in sound
(2) Doppler effect is symme tric in light
5 MARK QUESTIONS q imp Qustns
(1) Explain Dóppler effe ct. obtain the ugeneral expression for the iapparent prequency ig wound? [repeated]
(2) Describe various modes of vibration of aîr column io op. en and closed pipes. whow thiat a closed. pipe cans praduce only odd harmonics w. hereas van iopen yipe can youaduce vall harmonics?
(3) Derive lan expression \&or a harmonic wame?
(4) Dericle Newton's. for mula for the velocites of lonagituerdinal waue ins ian elastic mediums iwhat is hapbace's. 'correction?
(5) Discuss the effect of pressure \& te mperat . ure - uelocity so socend

